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ABSTRACT 

 

IMPLEMENTATION OF DATA MINING ALGORITHMS ON ROCK 

MECHANICS TEST DATA FOR KNOWLEDGE DISCOVERY 

 

 

 

Kaydım, Cengiz 

Master of Science, Mining Engineering 

Supervisor : Asst. Prof. Dr. Mustafa Erkayaoğlu 

 

 

August 2021, 82 pages 

 

Rock mechanics is a fundamental research field of engineering as the mechanical 

properties of rocks are crucial in mining and civil engineering applications. These 

properties control main production processes like excavation, drilling, and blasting 

in addition to geotechnical studies, such as slope stability for surface mining. 

Experimental studies performed conforming to suggested methods provide essential 

results representing the mechanical properties of rock material. Within the scope of 

this thesis study, a database was created containing a total of 9,967 test results, 

including 284 different projects carried out in the METU Mining Engineering Rock 

Mechanics Laboratory since the year 2000. After the raw experiment data was 

prepared by data cleaning operations, it was transferred to the database. OLAP cubes 

with multidimensional query features were developed to allow advanced analysis by 

collecting the data in a data warehouse. It is aimed to investigate the potential 

knowledge discovery of the rock mechanics-related test data by data mining 

algorithms with the support of the developed data warehouse. A case study was 

conducted to demonstrate the potential knowledge discovery capability of the data 

warehouse. In this study, rock types were classified to back fill the missing rock type 

information using decision tree and random forest algorithms trained. The validation 
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results revealed that the random forest model performed approximately 43 % better 

than the decision tree model. 

 

Keywords: Data warehouse, Rock mechanics, Relational database, OLAP, Data 

analysis  
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ÖZ 

 

BİLGİ KEŞFİ AMACIYLA VERİ MADENCİLİĞİ ALGORİTMALARININ 

KAYA MEKANİĞİ DENEY SONUÇLARI VERİ AMBARI ÜZERİNDE 

UYGULANMASI 

 

 

 

Kaydım, Cengiz 

Yüksek Lisans, Maden Mühendisliği 

Tez Yöneticisi : Dr. Öğr. Üyesi Mustafa Erkayaoğlu 

 

 

Ağustos 2021, 82 sayfa 

 

Kaya mekaniği, kaya malzemesinin mekanik özelliklerinin madencilik ve inşaat 

uygulamalarında önemli bir rol oynaması nedeniyle temel bir mühendislik araştırma 

alanıdır. Bu özellikler kazı, delme, patlatma, açık ocak madenciliği için şev 

stabilitesi gibi jeoteknik çalışmalardaetkili olmaktadır. Kaya malzemesinin mekanik 

özellikleri uluslararası önerilen metodlara uygun şekilde yürütülen deney sonuçları 

ile temsil edilmektedir. Bu çalışma kapsamında 2000 yılından günümüze kadar 

ODTÜ Maden Mühendisliği Kaya Mekaniği Laboratuvarı’nda gerçekleştirilmiş 284 

farklı projeye ait toplam 9.967 adet deney sonucunu içeren bir veri tabanı 

kurulmuştur. Ham deney verisinin temizlenmesi ile hazırlık aşamasının ardından 

veri tabanına aktarımı sonrasında veriler bir veri ambarında toplanarak ileri düzey 

analizlere olanak sağlaması için çok boyutlu sorgu özelliği bulunan OLAP küpleri 

geliştirilmiştir. OLAP küpleri ve veri ambarı ile veri madenciliği algoritmaları 

kullanılarak bilgi keşfi amacıyla incelenmesi amaçlanmıştır. Bu çalışma kapsamında 

veri ambarı altyapısının bilgi keşfi potansiyelinin irdelenmesi amacıyla örnek bir 

vaka çalışması yürütülmüştür. Bu çalışmada karar ağacı ve rastgele orman 

algoritmaları aracılığıyla eksik kaya tipi bilgisinin tamamlanması için kaya türleri 
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sınıflandırılmıştır. Doğrulama sonuçları rastgele orman modelinin karar ağacı 

modeline kıyasla yaklaşık % 43 daha iyi performans gösterdiğini ortaya koymuştur. 

 

Anahtar Kelimeler: Veri ambarı, Kaya mekaniği, İlişkisel veri tabanı, OLAP, Veri 

analizi 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Problem Statement 

The mechanical properties of rock material are determined by different tests 

conducted in accordance with suggested methods, such as those of the International 

Society for Rock Mechanics (ISRM). Some of the most commonly performed tests 

are static deformability, uniaxial/triaxial compressive strength, direct/indirect tensile 

strength, shear test, and density and porosity determination. The storage, data 

management, and analysis of these test results can become a complicated task as the 

number of experiments increases, with an inconsistent presentation of data that 

makes it more difficult to perform comparative analysis. Test results should instead 

be kept in a standard form to better enable advanced analysis and to more effectively 

and securely share data among researchers and engineers. This ideal data 

standardization and collective analysis can only be achieved using data management 

tools, such as a database and data warehouse. In addition, it is observed in the past 

conducted experiments that some parameters were not recorded. A data warehouse 

is needed in order to complete missing information. 

The experiment results of the Rock Mechanics Laboratory of the METU Department 

of Mining Engineering have been stored in different formats, such as spreadsheets 

and hard copy reports. These methods lack security and reliability for data analysis. 

In addition, the collective analysis of the data is not possible due to integration 
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limitations from the variety of data storage methods. In this thesis study, related 

studies available in the literature are examined to determine potential solutions to 

these data-related issues. It is observed that an infrastructure, which is composed of 

a database and data warehouse, is needed for the storage, collective analysis and 

backfilling the missing information of the METU Mining Engineering Department’s 

rock mechanics experiment test results. 

1.2 Aim and Scope of the Study 

Preliminary analysis showed that rock types in the experiment results were the 

mostly missing data in the experiment results. This thesis study aims to develop a 

rock mechanics database (RMDB) and rock mechanics data warehouse (RMDW) to 

store, analyze, and employ decision tree and random forest algorithms to backfill the 

rock type information.  These infrastructures provide access to a fast, reliable, and 

secure environment to retrieve information. In order to achieve the objective of 

developing a RMDB and RMDW, experiment results data was collected from static 

spreadsheets and hard copy reports. The gathered data was then cleaned with data 

preprocessing techniques before being transferred to tables in SQL Server 

Management Studio (SSMS) software. The RMDW was developed in MS SQL 

Server Data Tools (SSDT) software via a connection to the RMDB. Online 

Analytical Processing (OLAP) cubes were created for multidimensional analysis in 

the data warehouse. The analytical potential of the developed infrastructure is 

presented in different applications throughout this thesis. In addition, missing rock 

type information of filtered historical experiments were back filled with a decision 

tree and random forest algorithms via Rattle software. 

In this study, the primary focus is the experiment results data generated between the 

years 2000-2021 and was the sole data used for the data gathering and cleaning 



 

 

3 

 

 

processes. The expansion of the data back to the 1960s will increase the amount of 

data and will provide a better representation of the various experiments conducted 

on different rock samples. 

1.3 Thesis Outline 

This thesis study includes five chapters and one appendix. Chapter 1, the problem 

statement, presents the objectives and scope of the study. In Chapter 2, the literature 

review of the study is provided. Chapter 3 outlines the methodology followed during 

the database, data warehouse development processes, and utilized data mining 

algorithms. Chapter 4 gives the results of the conducted collective analysis in 

RMDW and data mining case study. Finally, the conclusion and recommendations 

are stated in Chapter 5. 

Appendix A provides the created tables in RMDB. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Rock Material Related Databases 

Although there is extensive and comprehensive literature in the field of rock 

mechanics, the number of research studies where the experimental results are defined 

as data, integrated with different data types, and used for knowledge discovery is 

limited. The purpose of developing a database is to ensure that the data is stored in a 

digital platform safely, which also enables the data to be queried easily when 

required (Zhu, Li, & Zhuang, 2011). To date, various databases have been used to 

store and process the information of the mechanical and physical properties of 

materials. Most of these examples focus on engineering materials, such as ceramics 

and metals. MatWEB, NIMS Materials Database, and MATBASE are some 

examples of such available databases. Databases created for the properties of natural 

materials, such as rock, generally focus on geological and mineralogical information 

(e.g., petrographic data, mineral composition, microstructure). Mindat is an example 

of a web-based database that provides general information for minerals (Ralph, J., 

1993). The RockPro software, which is developed for engineering applications, is a 

rock mechanics database tool for storing and reporting recorded data in underground 

operations (www.esgsolutions.com). This software is used to store data from pillar 

stability, rock burst, and support designs for specific projects. A more comprehensive 
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rock mechanics database that stores the mechanical parameters of rocks is the 

RocProp database developed by RocScience (Turichshev, 2002). This database 

contains more than 700 rock mechanics-related test results. Each record includes 

information about the rock (rock type, country, location, unit weight), reference, and 

test results. The test results are divided into four categories according to both the 

experiment type and the failure parameters used. Uniaxial/triaxial compressive 

strength tests, direct and indirect tensile strength tests are examples of data that can 

be obtained from this database. Similarly, data collected by wave speeds representing 

compressive strength and shear test conditions are also available (Liolios & 

Exadaktylos, 2011). 

There are limited number of studies focusing on the development of the rock 

mechanics test results database in the literature. Liolios and Exadaktylos (2011) 

developed a hierarchical database of rock mechanics-related test results. This 

database aims to store the results of rock mechanics, including rock sampling sites, 

test procedures, data reduction, and model calibration methods. The database 

developed by the researchers has been prepared by using Structured Query Language 

(SQL) and consists of three main sections: rock, experiment, and laboratory. The 

rock material section, shown in Figure 2.1, consists of tables that include the 

properties of the tested sample. These tables are sampled rock location, microscope 

image, mineral content, texture, microstructure, physical properties, and visual 

photographs. The tables in the experiment section include the dimensions of the 

sample, the modeling conditions, the measurement techniques, the deformation, and 

the strength results obtained from the experiment. The test section is divided into 

five sub-sections containing the test types. These sections are Brazilian Tests (BT), 

Drilling Tests (DT), Shear Tests, Uniaxial Compression / Triaxial Compression 

(UCTC), Uniaxial Tension Tests (UT). The rock and laboratory sections also contain 

multiple tables, such as the experiments section. The parent table includes necessary 
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information, while the other child tables provide additional information. While each 

record added to the table is kept in a column, the child tables are structured 

concerning the relationships defined in the parent tables. As a result, the database is 

designed to prevent the input of data in the sub-table if there is no available 

connection to the main table. 

 

Figure 2.1 Part of the relational diagram of the database showing the rock section 

(Liolios & Exadaktylos, 2011) 

Exadaktylos et al. (2007) used a data reduction method in the database where data is 

stored in two levels, Level 0 and Level A. In Level-0, the code number of the 

experiment, the dimensions of the sample, maximum strain, strain stress, failure 

pressure, time, confining stress, axial, and lateral strain values are stored in the 

columns. In Level-A, the test curve is divided into loading and unloading - restoring 

sections, and the elastic modulus value of the rock is calculated. In the next stage, 

the plastic behavior of the rock can be calculated according to the failure criterion 

and Level-A data.  
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The first study considered to be the pioneer of similar studies was the report prepared 

by Hsiung et al. (1995) for the Nuclear Regulatory Commission Contract NRC-02-

93-005. This report deals with the development of a rock mechanics properties 

database to facilitate the analysis and stability studies of an underground gallery 

where nuclear waste will be stored. In this database, rock material properties, crack 

properties, rock thermal properties, hydrogeological properties, Rock Mass Rating 

(RMR), and Norwegian Geotechnical Institute Tunneling Quality Index (Q) rock 

mass classification methods were recorded. 

Kim & Hunt (2017) developed the Earth Mechanics Institute (EMI) Rock Mechanics 

Database. The database aims to enable researchers to access any mechanical 

properties requested by a rock type on a web-based data environment securely and 

easily. MySQL Server infrastructure was used to create the database. The schematic 

given in Figure 2.2, designed by the researchers, includes the metadata of the rock, 

the position data, and tables of eight different test type related data. The tables of this 

test results are Brazilian tensile strength (BTS), cerchar abrasivity index (CAI), 

cohesion, density, direct shear, punch penetration, triaxial, and uniaxial compressive 

strength (UCS). The primary key of each test table is also treated as a foreign key to 

the EMI data table. Also, the position foreign key in the EMI data table is connected 

to the ID column in the location table. 
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Figure 2.2 Schema design for EMI rock mechanics database (Kim & Hunt, 2017) 

Another database developed for rock mechanics test results is completed by Pere et 

al. (2011). A geotechnical data management system has been developed to manage 

drilling and mapping data generated by consulting firms. This system is an 

infrastructure that provides verification, processing, and reporting to the user through 

a data collection interface. With this system, accessing and querying geotechnical 

data is provided in a user-friendly environment through a single data store. 

Descamp et al. (2013) developed a rock mechanics database to evaluate the abrasion 

effect of a rock formation on the drilling process. In order to analyze the collected 

data, sample, petrographic analysis, petrophysical analysis, mechanical analysis, and 

report tables were created in the database. The scheme used by the researchers for 

this infrastructure is given in Figure 2.3. 
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Figure 2.3 Schematic of the database prepared for the assessment of the impact of 

rock formation abrasion (Descamp et al. 2013) 

Li, Wang, and Zhu (2012) investigated the development processes of data storage 

and sharing infrastructures such as Greenwood, AGS, AGSML, and DIGS to keep 

the output of rock mechanics test results following specific standards. The 

experimental methods proposed by ISRM were discussed. It has been observed that 

the test methods offered by ISRM did not follow the standards established so far or 

the structure of the databases such as RocLab Rockware serving particular demands. 

It was also stated that the test implementation instructions for some experiments were 

not clearly defined within these standards. Fifty-two proposed methods have been 

developed by ISRM for various experiments and applications to increase the 

collective utilization of the rock mechanics experiment results. The data schematic 

of the Uniaxial Compression Test (UCT), which is one of these methods, is given in 

Figure 2.4. 
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Figure 2.4 The data structure of the uniaxial compression test (Li et al., 2012) 

Ng and Lau (2015) developed a database containing data such as uniaxial 

compression (UCS), point loading index (Is50), Schmidt hammer test (RL), porosity 

(η), water saturation (S), specific gravity (Gs) dryness and density (ρd) in their study. 

A total of 151 data sets were obtained from a series of experiments performed and a 

database was compiled for statistical analysis. The mean, standard deviation, and 

coefficient of variation values for each of the rock properties in this compiled 

database are given in Table 2.1. 

Table 2.1 Uniaxial compression strength (UCS), point loading index (Is50), Schmidt 

attractive (RL), porosity (η), water saturation (S), specific gravity (Gs), and statistical 

information of dry density (ρd) experiments (Ng & Lau, 2015) 

Data 

Set 
Property Min. Max. Average 

Standard 

Deviation 

Coefficient 

of Variation 

151 

UCS 12.00 134.80 62.38 25.27 0.41 

Is50 0.86 12.54 5.99 2.22 0.37 

RL 21.30 56.00 46.91 6.62 0.14 

η 0.45 6.13 1.22 0.74 0.60 

S 0.17 2.50 0.47 0.30 0.64 

Gs 2.46 2.66 2.61 0.04 0.01 

ρd 2.59 2.68 2.64 0.02 0.01 
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Using the database, the researchers developed a new empirical correlation to estimate 

the UCS of Macau granite. A comprehensive statistical analysis was performed to 

correlate UCS with Is50, RL, η, S, Gs, and ρd. In the first stage, the one-parameter 

relationships between UCS and rock index properties (Is50, RL, η, S, Gs, and ρd) were 

examined respectively and presented in Figure 2.5. In the second stage, convenient 

features were selected to generate rock-properties correlations by multiple regression 

analysis to estimate the UCS using the results from the first stage. A local empirical 

correlation was proposed for Macau granite with the created database, and the 

reliability of the correlation was measured with the independently created test 

database. This study reveals the contribution that rock mechanics test results can 

offer after a series of stages. 

 

Figure 2.5 Relationships between UCS and rock index properties (Ng & Lau, 2015) 
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The Geological Engineering Department of Technische Universität München 

(TUM) has developed a web-based database solution to handle all data related to 

research projects in a more suitable way for advanced analysis. (Menschik, Thuro & 

Käsling, 2015). Researchers aimed to optimize data management by finding a quick 

and easy way to analyze and report collected data. Their secondary purpose is to 

provide easier access to data for project partners located in different locations. This 

database system consists of a PHP web interface and MySQL database core. Figure 

2.6 shows the entity-relationship (ER) model of the main part of the rock database. 

This diagram provides a basis for programming the database and shows the 

connection between all tables, showing which combinations of cross-table queries 

are possible. 

 

Figure 2.6 Entity-relationship model of rock database created in TUM (Menschik, 

Thuro & Käsling, 2015) 
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Although the database system has a modular design, it consists of three modules: 

general project data, laboratory data, and user management modules (Menschik, 

Thuro & Käsling, 2015). In Figure 2.7, the general and schematic layout of the 

database is shared. The user can perform a simple statistical analysis within the 

database and export the data for further analysis. This study is another example of 

how a well-structured database can provide significant value to mining projects with 

different data sources by providing the opportunity to manage and analyze data 

easily. 

 

Figure 2.7 General and schematic layout of the TUM rock database (Menschik, 

Thuro & Käsling, 2015) 

Chuanyao et al. (2015) presented another example of database and data warehouse 

application in mining engineering. A concept called “Genetic Mineral Processing 

Engineering (GMPE)” has been introduced to take advantage of what is called 

“genetic characteristics”, which are related to the bedding formation, ore and mineral 

properties, and beneficiation. The steps of the researchers’ work on this subject are 

a) testing and filtering “Genetic Traits”; b) Establishment of GMPE’s database and 

data warehouse; c) Intelligent decision-making system for the ore beneficiation 

process; d) Validation test run; e) A virtual ore processing facility. The technical 
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route of the study can be seen in Figure 2.8. Genetic properties are collected with 

testing and stored and analyzed in a database and data warehouse environment. 

Processing method and technical parameters are recommended with an intelligent 

decision-making system. Verification and optimization stages are completed with 

different data analysis and modelling tools with recommended parameters and 

processing method.  

 

Figure 2.8 The technical route of Genetic Mineral Processing Engineering 

(Chuanyao et al., 2015) 

Jones (2015) presented a compilation of the physical properties of the rocks in the 

Bushveld Complex in his study. The database consists of more than 900 

measurements and 190 heat capacity values, each for thermal conductivity and 

density. The database consists of three main tables. Table I contains specific rock 
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types. Table II contains the average thermal conductivities and densities of different 

rock types in different stratigraphic units of the Bushveld Complex. Table III 

includes heat capacity measurement data. 

Gering et al. (2017) conducted a case study to demonstrate the contribution of an 

Enterprise Data Warehouse (EDW) used to manage drilling and blasting information 

on decision-making and process improvement and discuss how technical difficulties 

encountered during implementation were resolved. This case study examines the 

process of implementing a drill-blast workflow at multiple sites within Freeport 

McMoRan Inc (FMI) using both field data and information obtained using EDW. 

Particle analysis from drilling-blasting, explosive data used, and data generated by 

drilling systems can be visualized and reported using MineSight software (Figure 

2.9). In this way, instantaneous feedback is provided on how far the explosion 

achieved its fragmentation targets. In addition to visual inspection of blasting success 

by data warehouse users, it is possible to benefit from further analysis by looking at 

the relationship between fragmentation, rock type, and other parameters. 

 

Figure 2.9 Fragmentation analysis image created in Minesight software (Gering et 

al., 2017) 
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The literature review summarized in this chapter show that storing rock properties-

related data in a database makes data management relatively easy and efficient. It is 

possible to analyze data obtained from different databases or different tables in a 

database through a data warehouse. Various researchers used these database and data 

warehouse infrastructures to convert raw data to decision-making mechanisms 

through different intelligent systems, graphs, and tables. Such tools can add value by 

producing knowledge from raw data and provide the required infrastructure for data 

analysis and data mining.  

2.2 Data Analysis and Data Mining of Rock Material Related Data 

Data analysis is the process of cleaning, transforming, and modeling data to find 

useful information, reach conclusions, and support decision-making (Brandt & 

Brandt, 1998). The data analysis process includes several distinguishable stages, 

many of which are iterative and may require additional work in earlier stages with 

the results obtained afterward. 

A good data analysis methodology is essential to predict the project’s progress and 

accurately calculate the impact of the outputs to be obtained at the end of the project. 

Various methodologies have been created for data analysis to date. OSEMN (obtain, 

scrub, explore, model, interpret), SEMMA (sample, explore, modify, model, asses), 

KDD (knowledge discovery in databases), CIRSP-DM (cross-industry standard 

process for data mining) and TDSP (team data science process) systems can be given 

as examples of these methodologies (Azevedo & Santos, 2008; Saltz et al., 2018; 

Shafique & Qaiser, 2014). The knowledge discovery (KDD) scheme in a database, 

which is one of these systems, is given in Figure 2.10 as an example. The diagram 

shows the necessary stages for a data science project. At these stages, the process of 

collecting the data in the database, transferring it to the data warehouse after certain 
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stages, and then transforming it into information with various data analysis methods 

is summarized. 

 

 

Figure 2.10 Data mining as a step in the process of knowledge discovery (Han, 2006) 

There are many different approaches to data analysis. Data analysis may include 

different techniques in different fields and allows data collection from a wide variety 

of sources obtained through different sources such as traffic cameras, satellites, 
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recorders (Zohuri & Moghaddam, 2017). Data collected for data analysis in the 

mining industry is commonly obtained through experimental research and 

equipment-based technologies. The collected data must be organized and 

preprocessed before being used for data analysis. A data warehouse is one of the 

systematical implementations where these processes are carried out, and data is 

sourced from different systems and integrated for business intelligence purposes. 

Technologies used in mining engineering are continuously improving, as seen in 

every industrial production activity. Digitization for the mining industry includes the 

use of computer-assisted or digital devices, methods, systems, and digitized data to 

increase work productivity and efficiency while reducing costs (Barnewold & 

Lottermoser, 2020). One of the most important and widely applicable current digital 

developments in the mining industry, which benefits from versatile processes and 

high-capacity equipment, is the analysis of the collected data and its use in decision-

making processes. 

Another tool used in decision making process is OLAP, a decision support 

technology, which is among the data visualization studies (Codd et al., 1993; 

Maniatis et al., 2005). OLAP research is closely related to data warehouses, which 

are considered the information sources where OLAP is performed. The general data 

flow path involves collecting data from various sources to data warehouse systems 

and then using this data in the multidimensional analysis process using OLAP 

applications (Tsois et al., 2001). The multidimensional analysis primarily involves 

calculating aggregated information using large volumes of detailed data. Data is 

analyzed based on detailed or derived characteristics (dimensions) using an almost 

static business model (hierarchies). The application of the OLAP cubes in the mining 

industry is still extremely limited. 
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OLAP databases can store data structures in the form of multidimensional tables, 

also known as data cubes, which form an essential part of information systems. 

Manipulating and presenting such information through interactive multidimensional 

tables and visual graphics support analysts during review (Caron & Daniels, 2013).  

Data warehouses and metadata technologies are required to integrate various types 

of data originating from different subsystems (Chen et al., 2007). Data warehouses 

are electronic information systems that host data from another application, external 

subsystem, or source. Data warehouses contribute to database queries and reporting 

tools because of their ability to analyze data from various databases. Data 

warehouses are structured to perform analytics, subject-oriented, and clustering 

operations instantly (Chen et al., 2007). Metadata plays a crucial role in the design, 

implementation, and maintenance of the data warehouse. It is also used for data 

organization, querying information, and interpreting results. Location and 

information about data warehouse system units are recorded as metadata. 

The uniform data warehouse platform hosts many data mining methods, as shown in 

Figure 2.11, and supports OLAP for multidimensional data and decision-making for 

high-level users (Chen et al., 2007). It includes feature extraction, classification, fault 

diagnosis, prediction, association rule extraction, statistical analysis, and data mining 

functions with many algorithms. 
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Figure 2.11 Uniform data warehouse platform (Chen et al., 2007) 

Zheng et al. (2008) designed an intelligent system to calculate the rational production 

capacity of an underground metal mine. This system is a meta-synthesis of an 

artificial neural network (ANN). The entire system includes various subsystems, as 

shown in Figure 2.12. 

 

Figure 2.12 Zheng et al. (2008) prepared intelligent system 
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In this mine optimization design, it is proposed to use a data warehouse subsystem 

to store raw data, data generated during optimization, and system function indexes. 

The data processing subsystem is used to convert large amounts of data to ANNs and 

training samples, while the warehouse subsystem, which is another system, is used 

to accumulate relevant information. The ANN subsystem serves to validate the scale 

of the mine’s production. The auditing subsystem is used as a user interface and a 

section for interpretation (Zheng et al., 2008). 

There are limited number of studies using data warehouse, relational databases, and 

OLAP tools in the mining sector. Chen et al. (2007) proposed a three-layer model 

for digital communication within a mine through two primary platforms, a uniform 

transmission network and a data warehouse. The three-layer digital mining model is 

shown in Figure 2.13. 

 

Figure 2.13 Three-layer digital mining model (Chen et al., 2007) 
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As given in Figure 2.13, the lowest layer is the information gathering and ordering 

layer. The middle layer is the information integration layer. Each subsystem operates 

using its own data structure. Data warehouse technology and metadata techniques 

are key technologies in the information integration layer. The top layer is the 

management and decision-making layer. 

An implementation of data warehousing and data mining with mining-related data is 

presented by Erkayaoğlu and Dessureault (2019). Operational data from an open-pit 

copper mine is gathered from several sources such as drill navigation system, fleet 

management system, and processing plant. A data warehouse is built using these data 

sources and integrated with each other. After, data mining algorithms are used to 

predict the fragmentation distribution after blasting operation via online analytical 

processing (OLAP) cubes. As a result, parameters affecting each stage in the mine-

to-mill operation are determined to establish a data-driven framework to help the 

decision-making process. 

Kahraman and Dessureault (2018) created a mine planning database to aid the 

decision-making process in a control room. The overview of data collection for the 

database is given in Figure 2.14. The researchers built a data warehouse using 

historical data kept in OLAP cubes and data produced by a fleet management system. 

Mine planning spreadsheets, including information about plans, targets, and 

equipment availability, were combined on a mine planning database. It was observed 

that right decision-making tools reduced the pressure of the fleet management system 

controllers and increased the adherence to the mine plan.  
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Figure 2.14 Overview of the data collection for the database (Kahraman & 

Dessureault, 2018) 

Another application of data mining on mining-related data is published by Miranda, 

Sousa, Roggenthen, and Sousa (2012). Geotechnical information gathered from 

underground works in Portugal is used for knowledge discovery purposes in a 

database. New regression models were developed using multiple regression and 

ANN to calculate strength and deformability parameters and rock mass rating index. 

A similar perspective is also followed in tunnel boring machine (TBM) related data 

studies. 

Several databases were deployed to create models to predict the performance of 

TBM in different rock conditions and to develop rock mass characteristics in the 

literature. Yağız (2006) created two different models, including classification and 

regression tree analysis and multivariate regression analysis to predict the 
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performance of a TBM. Yağız (2008) created a database using rock mechanics data 

produced by two different sources. These sources are TBM and the rock mechanics 

laboratory test results, such as UCS, indirect tensile strength, brittleness/toughness. 

The results obtained in the laboratory and in the field were analyzed statistically, and 

the effect of rock mass properties on TBM performance was measured. A new 

empirical formula was created to measure TBM performance utilizing the developed 

database. Gong and Zhao (2009) conducted a study to develop a rock mass model to 

observe the effect of rock mass properties on a TBM penetration rate. Another study 

on TBM performance is conducted by Hassanpour et al. (2011). The data obtained 

from tunnel projects opened using TBM in hard rock units of different strengths were 

combined in a database to create a new TBM performance estimation model. Tóth, 

Zhao, and Einstein (2013) measured the TBM performance in mixed ground 

conditions. Delisio, Zhao, and Einstein (2013) published an article to analyze and 

predict TBM performance in blocky rock conditions.  

Data generated by the TBM is an example to stream data. Since streaming data is 

continuously generated, a database or a data warehouse is needed to manage, 

manipulate, and analyze the data due to the large volume. Thus, a database or a data 

warehouse were utilized TBM-related studies presented in this literature review.  

Comprehensive studies integrated with different data types are limited in order to 

obtain concrete and reliable information from rock mechanics test results. This 

requires the development of a data warehouse. While the data warehouse provides 

an infrastructure that allows the analysis of data transferred from different systems, 

databases make it possible to access the data by ensuring that the data can be easily 

and securely stored. Databases create the necessary infrastructure for updating 

historical data already recorded and efficiently storing large amounts of data. At the 

same time, it might ensure data security by making data accessible only to authorized 

users. In addition to these, it ensures that the data is stored correctly and consistently, 
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with the predefined data integrity constraints in the database. It also ensures that the 

access and search of the data in the database are straightforward and understandable 

by querying.
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CHAPTER 3  

3 DATABASE AND DATA WAREHOUSE DEVELOPMENT 

3.1 Database Development 

A database is a collection of data that are linked together. The term “data” refers to 

known facts that can be recorded and have implicit meaning. The presented database 

definition is fairly broad. For example, one may consider the words that make up this 

page of text to be connected data, and therefore a database. However, the term 

database is frequently used in a more limited sense. The following are the implicit 

properties of a database (Elmasri & Navathe, 2017): 

• A database is a representation of some component of the real world, 

sometimes known as the mini-world or the discourse universe (UoD). The 

database keeps track of changes to the mini-world. 

• A database is a rationally arranged collection of data that has some meaning. 

A database cannot be referred to be a random collection of data. 

• For a specific purpose, a database is created, developed, and populated with 

data. It has a target audience and some pre-determined applications that these 

users are interested in. 

There are several types of databases, such as relational, noSQL, and columnar. 

Although noSQL databases have recently become popular due to their flexibility 

while storing unstructured data, the relational database type was used in this study 

after considering the rock mechanics experiments test results structure and 

conducting literature research.  
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The methodology followed in the relational database development can be presented 

as the following (Silberschatz, Korth & Sudarshan, 1997): 

• Data gathering, cleaning and characterization 

• Conceptual design 

• Logical design 

• Physical design 

3.1.1 Data Gathering, Cleaning, and Characterization 

A commonality of all the presented data analysis systems in Chapter 2 is that the 

studies began with collecting and preprocessing data. Similarly, this study starts with 

data collection and cleaning. The results of the experiments carried out in the METU 

Mining Engineering Rock Mechanics Laboratory from the year 2000 to the present 

were compiled and any errors and typos were corrected by using various data 

cleaning methods. 

To begin, a static spreadsheet file was used to compile and consolidate the data. In 

the defined static raw data file, different worksheets were created for each 

experiment, and columns were defined for the expected outputs related to the 

experiment. With the increase in the number of experiments performed, it has been 

observed that the results of the experiments have been reported in different ways 

throughout this time period. In these cases, in order to prevent data loss, additional 

columns were added to the worksheets to include those experiment results. In 

addition, the existing rock types were divided into rock classes as metamorphic, 

igneous, and sedimentary at this stage. This classification enabled the analysis to be 

performed according to the generalized rock types in the RMDW. 
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Once the data entry was completed, the next step was the data cleaning and extraction 

process. To start, test results using different measurement units were gathered under 

a standard measurement unit. For example, while the elastic modulus value is shared 

with the GPa unit by some researchers, it is shared with the MPa unit by others. Such 

measurement unit conversions were revised to make them common in order to ensure 

the accuracy of future mathematical operations. Likewise, the thousands and decimal 

separators needed to be standardized, as the separators used in the reports differ 

depending on the language. For this purpose, all of the entered data were revised and 

standardized as a comma for the thousands separator and point for the decimal 

number. During this process, it was observed that some test results were left blank 

for various reasons. These reasons were digitally defined so that they can be 

separated from the database with certain filters. The numerical values used for the 

missing data are listed in Table 3.1. 

Table 3.1 Numerical equivalents of missing results in experiments 

Description not available. -111 

The test result could not be determined because 

the sample has failed from the crack, or the 

sample was not suitable for testing. -222 

The result of the experiment could not be 

determined healthy. -333 

The failure has occurred from the filling. -444 

Irregular failure has occurred. -555 

 

During the collection of the data, certain anomalies in the experiment results that 

occurred due to the researchers’ post-experiment report and similar reasons were 
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examined. This step is necessary to increase the reliability of the data entered into 

the database. Thus, a reliable data set could be presented to the researchers during 

the use of the database for advanced analysis. For this stage, the experimental results 

were analyzed with histograms and box plots. Mean, maximum, and minimum 

values were calculated for each parameter in the experiment results. Errors and typos 

such as negative failure load values or outliers beyond the limit of the testing 

equipment were corrected. In Figure 3.1, the histogram of the UCS test results before 

populating the related table in the database is shared as an example. It is observed 

that most of the UCS values are between 0-100 MPa. A set of codes that filtered the 

experimental results in the Python programming language using Python libraries 

such as pandas, matplotlib, and NumPy were used to prepare the histograms.  

 

Figure 3.1 Distribution of UCS test results at the end of the data gathering, cleaning 

and characterization stage 
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3.1.2 Conceptual Design of the Database 

The conceptual design phase was completed before defining the tables to be used in 

the database and the relations between the tables. Data model for rock mechanics 

laboratory results sharing (Li, Wang & Zhu, 2012) for the ISRM were taken into 

consideration in order to ensure that the model created at this stage complies with 

these suggested methods. During the data-gathering stage, some data was discovered 

to be non-conforming to the suggested data model. Therefore, the tables were 

redefined to include new columns covering this data. These add-ons are essential for 

the database to provide the necessary flexibility to researchers in the future. The ER 

diagram was created for the RMDB considering the literature. The simplified version 

of the ER diagram is shared in Figure 3.2. The connection of the experiments tables 

(uniaxial/triaxial compressive strength, static deformability, density and porosity, 

indirect tensile strength, direct shear, slake durability and point load) to information 

tables (experiment information, ID table, and rock types) can be seen in the ER 

diagram.  

 

Figure 3.2 Simplified ER diagram of RMDB 



 

 

32 

 

 

In every experiment table in the database, properties about the intact rock sample are 

kept, such as id of the sample, drill hole name, length and diameter of the sample, 

depth of the sample, and rock type. Depending on the experiment, other properties 

are also added to the tables. In addition, each table in the database is shared with 

their data type in Appendix A. 

3.1.3 Logical Design of the Database 

Tables were created in the SSMS software in this stage. Keys are defined in order to 

establish connections between tables. For each sample, a key consisting of the 

experiment year, type, and number of experiments was created. The static 

deformability, Brazilian, and experiment information tables are given in Figure 3.3. 

 

Figure 3.3 Display of deformability test, experiment information, and Brazilian Test 

tables of RMDB 
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While deformability and Brazilian test tables include the properties of the intact rock 

sample, and results of the experiments, the experiment information table includes 

metadata about the experiment and experiment ID. 

3.1.4 Physical Design of the Database 

The data, which was digitized and cleaned in the data collection stage, were 

transferred to the tables created in the database, considering the data types. The 

indexing process has been completed in order to improve the query performance and 

the query times of the possible data sources to be added in the future. The result of a 

query performed on the uniaxial/triaxial compressive strength table is given in Figure 

3.4. 

 

Figure 3.4 Example of a query showing the first 1000 data in the uniaxial/triaxial 

compressive strength table 
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The result of the query given in Figure 3.4 shows how data is stored in the 

uniaxial/triaxial table. It can be seen that rock type is not shared in the given 

experiment. This was also common in other different experiments. Rock type of the 

intact rock samples was missing nearly 85 % of the recorded experiments. 

3.2 Data Warehouse Development 

A data warehouse is a system that periodically gathers and secures data from many 

sources and stores it in a dimensional or normalized data storage. It usually contains 

historical data and can be requested for data analysis. Data warehouses, unlike 

databases, are not updated with each transaction. In general, updates are made in 

batches at regular intervals, with the low-density times being preferred. (Rainardi, 

2008) 

  

Figure 3.5 A diagram of a data warehouse system (Rainardi, 2008) 
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A diagram of a data warehouse system is given in Figure 3.5. When we inspect the 

diagram from left to right, data is loaded from source systems such as databases with 

extract, transform and load (ETL) system. ETL refers to a system that can connect 

to source systems, read data, transform it, and load it into a target system such as 

dimensional data source (DDS). The reason why DDS is used in a data warehouse 

system is that DDS data can be modified according to needed analysis.  

A data warehouse system, RMDW, was developed to analyze the data stored in 

RMDB. SQL Server Data Tools is used to create the DDS. SQL Server Data Tools 

software (SSDT) is a development tool that allows designers to create different 

databases, analysis services data models, integration services packages, and 

reporting services reports. In order to load to data and to the visual basic 

environment, a connection is made to RMDB. After tables are loaded to the data 

warehouse environment, Online Analytical Processing (OLAP) cubes are deployed. 

View from SSDT is given in Figure 3.6. 

 

Figure 3.6 A sample view from SSDT  
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An OLAP cube is a multidimensional data array optimized for rapid data analysis. 

A three-dimensional cube example consisting of customer, product, and time 

dimensions is given in Figure 3.7. The term “cube” refers to a multidimensional 

dataset called a hypercube if the number of dimensions exceeds three. This dataset 

may come from different and unconnected sources. For two-dimensional data, it is 

possible to use the traditional method of organizing the data in rows and columns 

using a spreadsheet, but for multidimensional data, using a spreadsheet may not be 

the most convenient option.  

 

Figure 3.7 Three-dimensional cube example consisting of customer, product and 

time dimensions (Rainardi, 2008) 

OLAP assists users during hardware resource-intensive operations such as grouping, 

aggregating, and combining data by precomputing and pre-aggregating data to make 

analysis faster. OLAP databases are divided into one or more cubes designed to 

facilitate report creation and viewing. 

After OLAP cubes are deployed, Microsoft Power BI software is used for the data 

analysis and visualization. Microsoft Power BI is a business analytics service offered 
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by Microsoft. It provides interactive visualizations and business intelligence 

capabilities for users to create their own reports and dashboards. It also supports 

different programming languages such as R and Python, which makes usage of the 

software flexible. Created dashboards, figures, and tables are presented in Chapter 

5. 

3.3 Data Mining Case Study 

Created data warehouse system is not only used for data visualization but also 

knowledge discovery purposes to back fill data via data mining. In order to backfill 

the missing information, a set of experiment results retrieved from the database is 

used to train a decision tree and random forest model for rock type classification.  

3.3.1 Data Analysis  

Data of 300 experiments carried out within the scope of a geotechnical project were 

used in this case study. Since nearly 90 % of the records in the RMDB had no rock 

type information, it is not possible to successfully backfill the rock type information 

using all records in the RMDB. That is why a sample project data consisting of only 

300 experiments is chosen to measure the performance of the classification.  

The types of experiments used in this project are; UCS, triaxial compressive strength, 

indirect tensile (Brazilian), and density experiments. Experiments were carried out 

in different rock formations, including ore, phyllite, granite, and hornfels. Conducted 

experiments numbers according to experiment and rock type used in the case study 

are given in Table 3.2. 
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Table 3.2 Conducted experiments numbers according to experiment and rock type 

used in the case study 

Experiment Type Ore Phyllite Granite Hornfels 

Static Deformability 16 13 11 36 

Triaxial Compressive 

Strength 
12 7 7 24 

Indirect Tensile (Brazilian) 7 6 13 22 

Density 28 20 18 60 

Total (Rock Type) 63 46 49 142 

Total 300 

 

Different experiments were joined in 76 different records according to depth of the 

drillhole to classify rock types. These 76 records were divided into train, test and 

validation sets as 80 %, 10 %, 10 %. Density experiments conducted on different 

rock types used in the case study had an average density of 3.1 gr/cm3. The density 

values were changing between 2.6 gr/cm3 and 5.0 gr/cm3. The box plot given in 

Figure 3.8 shows the distribution of the density according to rock type. It can be seen 

from the figure that while the rock types with the lowest density are granite and 

phyllite, the rock type with the highest density is ore. 
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Figure 3.8 Box plot showing the density distribution of the density experiments 

according to rock type 

One of the 76 experiments to be used in the case study was considered invalid due 

to cracks in the rock. Analyzes were carried out using 75 test results. It is understood 

from the box plot given in Figure 3.9 that the average UCS of the tests carried out is 

100 MPa. While the highest UCS values were observed in the granite rock, the 

highest strength variability is also seen in this rock type. It can be concluded that the 

highest average UCS value is in the ore type of rock, followed by granite, hornfels, 

and phyllite, respectively. 

 

 

Figure 3.9 Box plot showing the UCS (MPa) distribution of the static deformability 

experiments according to rock type 
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When the modulus of elasticity (E) of rocks was examined, it is seen that ore had the 

highest modulus of elasticity value (Figure 3.10). The variability was found to be 

very low in this rock type. The average elasticity of all rock types was found as 

approximately 26 GPa, ranging between 5 GPa to 67 GPa. 

 

Figure 3.10 Box plot showing the modulus of elasticity (MPa) distribution of the 

static deformability experiments according to rock type 

Another result of the static deformability experiment, the Poisson’s ratio, was found 

to be approximately 0.10 for all rocks. Figure 3.11 shows the distribution of the 

Poisson’s ratio. 

 

Figure 3.11 Histogram showing the Poisson’s ratio distribution of the static 

deformability experiments according to rock type 



 

 

41 

 

 

Indirect tensile strength experiments, another experiment included in the case study 

experiments, it is seen that the average of all rock types is approximately 14.5 MPa. 

Tensile strength values ranged from 5 MPa to 31 MPa. The highest variability is 

observed in hornfels type. Furthermore, average values of granite, hornfels, and 

phyllite were similar and were found to be approximately 15 MPa. On the other hand, 

ore rock type had the smallest average tensile strength value, 11.4 MPa. 

 

Figure 3.12 Box plot showing the tensile strength (MPa) distribution of the Brazilian 

experiments according to rock type 

The triaxial compressive experiments carried out with 2 MPa, 4 MPa, and 6 MPa 

confining pressures. When the σ1 values of all rocks were examined, the values 

ranged from 49 MPa to 365 MPa, while the average value was recorded as 162 MPa 

(Figure 3.13). The highest mean value was determined in granite rock with 252 MPa. 

This rock type was followed by ore, hornfels, and phyllite, respectively. 
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Figure 3.13 Box plot showing the σ1 (MPa) distribution of the triaxial compressive 

experiments according to rock type 

With the completed several sets of the triaxial compressive test, cohesion (c) MPa 

and internal friction angle (φ) were determined for each rock type with the 

constructed Mohr’s Envelopes. Table 3.3 shows the cohesion and friction angle 

values of rocks. Cohesion values in ore and phyllite rocks were determined as 

approximately 14 MPa. This value was found as high compared to granite and 

hornfels rock. In addition, when internal friction angles are inspected, one can see 

that values vary between 46 degrees and 69 degrees. 

Table 3.3 Cohesion and internal friction angle values of rocks used in the case study 

Rock Type c (MPa) φ (°) 

Ore 14.65 65 

Phyllite 14.03 46 

Granite 9 68.8 

Hornfels 11.28 60.8 
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3.3.2 Classification Algorithms 

After a detailed data analysis, the test results of the static deformability, triaxial 

compressive strength, indirect tensile (Brazilian), and density experiments were 

joined according to the lithological properties and the depths from which the intact 

rock samples were obtained. Combined test results were extracted from the data 

warehouse and loaded to Rattle software for the data-mining operation.  

Rattle is a R-based graphical user interface (GUI) for data mining (Figure 3.14). It 

provides statistical and visual summaries of data, converts data so that it can be easily 

modeled, creates both unsupervised and supervised machine learning models from 

the data, visually displays model performance, and scores new datasets. One of the 

most valuable features is that all of the interactions with the graphical user interface 

are saved as a R script that can be run in R without having to use the Rattle interface. 

 

Figure 3.14 GUI and data load window showing parameters used in the case study 
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Figure 3.14 is a screenshot taken from the data import window in Rattle software 

showing input and target parameters used in the model. The variable name, data type 

and use of the variable such as, input, target, risk can be adjusted from this window. 

The software indicates the number of unique values in the comments column to 

provide general information about the properties of the variable. Data can be loaded 

into the software from different sources, such as comma separated file (.csv), text 

(.txt) and MS Excel (.xlsx, .xls) files. Open Database Connectivity (ODBC) is 

another way to transfer data to software via a database connection. At the same time, 

there are sample data sets available that could be used to run data mining algorithms 

for training purposes. Partitions percentage and seed number can also be adjusted 

from this window. From the partition pane, loaded data can be randomly divided into 

certain percentages as train, test, and validation data sets. In addition, seed number 

allows users to divide the data into the same train, test, and validation data sets. 

Data used in this study were randomly split as training, validation, and testing sets, 

80 %, 10 %, and 10 %, respectively. The reliability of the data mining model is tested 

and confirmed with the validation and test data sets. 

The main purpose of the case study is to successfully classify the rock types from 

conducted tests via data mining algorithms. After the rules of classifications are 

determined, a classifier can be used for backfilling the missing rock type information. 

As a classifier, a decision tree and random forest classifier were used. These 

classifiers are the most commonly used classification data mining algorithms in 

many studies (Ba’abbad et al., 2021). Especially, decision trees are easy to use 

classifiers that can be interpreted for important predictors or values for each split in 

the tree.  

A decision tree is a recursive split of the instance space that is used to classify data. 

The decision tree is made up of nodes that create a rooted tree, which is a directed 
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tree with no incoming edges and a node named "root." Each of the other nodes has 

one incoming edge. An internal or test node is a node with outgoing edges. All 

additional nodes are referred to as leaves (also known as terminal or decision nodes). 

Each internal node in a decision tree divides the instance space into two or more 

subspaces based on a discrete function of the input attribute values (Maimon & 

Rokach, 2005).  

A decision tree given as an example shown in Figure 3.15 is used to determine 

whether or not a potential client would reply to a direct mailing. Internal nodes are 

shown as circles, whereas leaves are shown as triangles. The analyst may use this 

classifier to anticipate a potential customer's reaction and identify the behavioral 

characteristics of the whole potential customer group when it comes to direct 

mailing. Each node is labeled with the property it is testing, and its branches are 

labeled with the values that correspond to that attribute. 

 

Figure 3.15 A Decision tree example showing direct mailing potential (Maimon & 

Rokach, 2005) 

Decision-tree classifiers are a common classification approach. The reason is that 

created model is easy to interpret. Figure 3.16 shows the decision tree parameters 

that can be changed in the software. The minsplit parameter defines the minimum 
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number of observations required at a node in the tree before it may be considered for 

splitting. The smallest amount of observations that can be made in every decision 

tree leaf node is known as the min bucket parameter. The depth of the tree is defined 

as the maximum depth of any node in the final tree. Depth 0 is assigned to the root 

node. The complexity parameter is used to determine the ideal tree size and regulate 

the size of the decision tree. Classifier performance can be increased by fine tuning 

these parameters. 

 

Figure 3.16 Decision tree model interface 

Random forests, also known as random decision forests, are an ensemble learning 

method for classification, regression, and other problems that works by training a 

large number of decision trees (Kantardzic, 2011). For classification tasks, the 

random forest’s output is the class chosen by the majority of trees. Ensemble 

approaches combine many learning algorithms to achieve higher predictive 

performance than any of the individual learning algorithms could.  

Random forest algorithm shows different correlation and strength with changing 

introduced variable and sample size. Breiman (2001) states that as the number of 

trees in a forest grows larger, the generalization error converges to a limit. The 

strength of individual trees in the forest and their connections determine the 

generalization error of a forest of tree classifiers. The effect of different sample size 

and number of variables on algorithm strength and correlation have been studied in 
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the related literature. Regardless of the sample size, error was proportional to number 

of variables, the less the variable the more the error. Furthermore, it is seen that with 

the increase of the sample size, the algorithm strength increased for a longer time 

before reaching to the limit. Figure 3.17 shows the effect of number of inputs on 

larger sample data set. It is observed that correlation and strength increased with 

increasing number of variables. In addition to this, when the number of inputs was 

low, the variation of out of bag (OB) and test set error were higher. Variation 

decreased with the introduction of more inputs to algorithm. Later, errors showed 

slight linear increase with the increasing number of inputs. 

 

Figure 3.17 Effect of number of inputs on large data set in random forest algorithm  
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Random forest models can be trained in the Rattle software. The random forest 

interface of Rattle software enables to change parameters such as number of trees, 

variables, and sample size to achieve better predictive performance. 

The Boosting meta-algorithm is a fast, simple, and straightforward method for 

creating data mining models. Adaptive boosting has been referred as the “best of the 

shelf classifier in the world’ by Hastie et al (2001). This method creates several 

models from a dataset by employing a different learning technique that doesn't 

necessarily the best. This is actually preferred for this type algorithm and often 

referred as the weak learner. Decision trees are the most common choice to represent 

the boosting algorithms. In a very simplified manner, boosting is a technique that 

connects weights with dataset observations and increases (boosts) the weights for 

those observations that are difficult to predict properly. In order to fine tune the data 

a series of models can be constructed by simply modifying the weights assigned. An 

additive model is then obtained as the finished product. One must be careful as 

boosting algorithms can fail when the data is limited, and models are overly complex 

(Williams, 2011). 

Neural Networks tries to mimic the spirit of neurobiology in artificial networks to 

create networks and devices in a similar manner to solve computational problems 

easily (Hopfield, 1988). The initial interest to this method dates to 1940s. Artificial 

neurons are the basic processing elements for this architecture, which is composed 

of three different types of layers; input, hidden and output layers. Based on the input 

signal and characteristic of the neurons the effect is represented by connection 

weights. By adjusting these weights based on the algorithm the learning ability is 

gained (Abraham, 2005). 

Support Vector Machines (SVM) functions the best on nonlinear, sparse and high 

dimensional problems. Depending on the tuning options selected, this can be 
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challenging and time intensive. This is the main disadvantage of SVM. On the 

contrary, dealing with the support vectors rather than the whole dataset makes it less 

taxing and size of the training set is not a concern. Also, these models are less 

effected by the outliers, makes it advantageous (Ma, 2014). In order to obtain the 

vectors in this method, observations are clustered depending on the target variable 

to create a straight line. It is very seldom that a straight line can separate the 

observations because data is not distributed in such a way. In that case, the input can 

be remapped in alternate ways to generate new variables. This increases the chance 

of creating a sort of gap between observations of different classes. By repeating this 

process, decisions could be made on which hyperplane represents the observations 

and therefore the conclusion. 

The discussed classification algorithms could also be used in this study, such as 

boosting algorithms, ANN and SVM. Compared to decision tree and random forest 

algorithms, interpretation of the result is relatively more difficult to interpret. 

Because of this reason, only decision tree and random forest algorithms were 

utilized, and relative performances were measured in this study.  

Developed models and their predictive performances are presented in Chapter 4.
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

4.1 Data Analysis in the RMDW 

The findings obtained after completing the development of the database, data 

warehouse and OLAP cubes are presented in this chapter. The map in Figure 4.1 is 

a heat map showing the locations where the samples were taken from, where the 

experiments examined in this project were carried out. 

 

Figure 4.1 Distribution of number of experiments conducted by location 

This map gives the researcher visual clues as to the locations of the samples and how 

they varied according to their density. The change in the radius of each circle 

represents the density of the number of experiments. Geotechnical projects 
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completed for certain operations can be seen in Figure 4.1 as having comparably 

higher number of experiments recorded in the data warehouse. 

 

Figure 4.2 User panel with general information in the data warehouse 

The panel shared in Figure 4.2 makes it possible to access general information such 

as the total number of experiments, region, and city in the data warehouse. Users can 

filter by rock class and type through menus at the top of this panel. Another tool 

available here is the question box, which makes it possible to query within the data 

warehouse without the need for any programming language knowledge; it is possible 

to get answers in this box by asking questions about the experiments verbally. The 

graph in Figure 4.3 shows the percentage (%) of all experiments performed. 
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Figure 4.3 Graph showing the distribution of experiments 

The most commonly performed experiments carried out between the years 2000 and 

2020 are uniaxial/triaxial compression (34.93 %). Other tests include indirect tensile 

strength (18.08 %), static deformability (16.21 %), point loading (12.74 %), density 

and porosity (9.11 %), direct shear test (7.00 %), and slake durability (1.92 %). In 

the panel presented in Figure 4.4, data can be interactively classified according to 

igneous, metamorphic, and sedimentary rock types. 

 

Figure 4.4 User panel of UCS test results 
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Similarly, after selecting the rock type, it is possible to filter by both these features 

on the graph. When the igneous rocks were examined, the average compressive 

strength value was approximately 33 MPa, and the failure load was approximately 

100 kN. 

 

Figure 4.5 UCS test results (MPa) frequency graph of igneous rocks 

It is seen that most of the test results range between 10-40 MPa when the UCS (MPa) 

histogram of the igneous rocks is examined (Figure 4.5). It is possible to conclude 

that the data do not follow a normal distribution. When the UCS test results were 

compared, the highest values were determined as the igneous rocks, followed by 

metamorphic and then sedimentary. Figure 4.6 shows the kernel density graph of 

UCS test. Extreme values can be determined from this figure. 

 

Figure 4.6 UCS test results (MPa) density graph of igneous rocks showing the 

extreme values 
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ID 1 and ID 2 values are reported as a part of the results from stability tests against 

dispersion in water. In this experiment, dry rock grains varying between 40 g and 60 

g are rotated 200 times in a water drum within 10 minutes, after which the sample is 

dried and the percentage of weight loss is recorded as ID 1. The test is then repeated, 

using the same rock sample. The second weight loss percentage is defined as ID 2. 

Figure 4.7 represents the user panel developed for the results of this experiment. 

 

Figure 4.7 User panel for slake durability test results 

In the panel shown in Figure 4.7, the upper left graphic was created by the seaborn 

library in the Python programming language and shows how the ID 1 and ID 2 values 

change between 0-100. Also, the distribution parameters is presented to the user via 

the histogram on the graph. The two images in the upper right were created with the 

kernel density functions of the ID 1 and ID 2 parameters to determine the extreme 

values through the Tukey algorithm. In addition, it is possible to obtain interactive 

visuals by switching between various rock types and different experiments through 

the table containing the rock types and test results below. 
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Figure 4.8 Results of a single slake durability test 

The stability index (ID 1) obtained from the first cycle is always higher than the 

stability index (ID 2) obtained from the second cycle, as expected. This was observed 

for all experiments performed and validates the slake durability test results. Tensile 

strength and failure load are reported as a result of indirect tensile testing. 

 

Figure 4.9 User interface of indirect tensile strength test 
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As shown in Figure 4.9, although the rock type is unknown for 85 % of the 

experiments carried out, the remaining 15 % contains the results of 35 different rock 

types. While the indirect tensile strength histogram shows a logarithmic distribution, 

a linear behavior was observed between failure load and failure strength, as expected. 

This also represents the data reliability of the test results and could be used as a data 

quality indicator. The bar graph seen in Figure 4.10 shows the average indirect 

tensile strength (MPa) of each rock type. 

 

Figure 4.10 Distribution of indirect tensile strengths (MPa) by rock types 

According to the indirect tensile strength tests results, granite is the rock type with 

the highest strength value, followed by hornfels, phyllite, and granodiorite rocks. 

The rock type with the lowest indirect tensile strength was determined to be lignite 

based on the available rock type information. 

As shown in Figure 4.11, direct shear test results were filtered as sedimentary rocks 

via an interactive user interface rock class chart. 
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Figure 4.11 User interface of direct shear experiment 

As a result, it can be observed that the rock types are dispersed with a similar 

percentage to each other. This was also observed when no filter was applied. The 

histogram of each test result can be observed in the graphs located on the diagonal 

in the graph on the right. The other axes of the same image present information about 

the relations of two different data with each other. Per the visuals created, no obvious 

correlation was found between the cohesion and friction angles in the direct shear 

testing. To analyze the relationship between the point loading index (MPa) and UCS 

(MPa), a scatter plot was created with all the data in the data warehouse (Figure 

4.12). 
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Figure 4.12 Point load index (MPa) – UCS test result (MPa) graph 

The expected linear relationship between the point load index and UCS values was 

clearly observed and conforms to the relationships defined in related literature. 

Figure 4.13 shows the distribution of rock types for the slake durability tests. 

 

Figure 4.13 Rock type distribution graph of the slake durability test 
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The most frequently tested rock types in this experiment are granite (33.33 %) and 

limestone (33.3 3%), followed by clay (22.22 %) and basalt (11.11 %). 

The most frequently tested rock type in direct shear tests is clay (19.53 %), followed 

by gyttja (16.00 %), limestone (12.47 %), coal (9.18 %), rhyodacite (8.47 %), marl 

(5.88 %), schist (5.18%), diabase (3.29 %), siltstone (2.59 %), lignite (2.12 %), 

mudstone (2.12%), serpentinite (2.12 %), claystone (1.41 %), dolomitic limestone 

(1.41%), volcanic agglomerate (0.94 %), granite (0.24 %), agglomerate (0.24 %) and 

others (3.76%). 

The distribution of the rock types in the static deformability test were as follows: 

coal (25.95 %), clay (16.79 %), quartz diorite (12.98 %), limestone (8.40 %), 

harzburgite (6.87 %), magnetite (6.11 %), calcschist (3.82 %), granite (3.05 %), 

lignite (2.29 %), gyttja (1.53 %), marble (1.53 %) and others (10.68 %).  

 

Figure 4.14 Photographs of a rock sample before and after the experiment 

In the data warehouse, the test results and sample properties - as well as the pre-test 

and post-experiment photos of the tested rock samples - can be accessed via the 

unique key. In Figure 4.14, before and after photographs of a rock sample from an 
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experiment are shown. These pictures can be helpful while extracting visual 

information from the rock samples, such as crack conditions, lithology, or rupture 

angle. Expert opinions could be added to the data warehouse as a manual source of 

data in case the before and after test photos are examined in a systematic manner. 

Another analysis could based on the size effect for samples to interrelate strength 

parameters. Figure 4.15 shows the relationship between the rock sample diameter to 

the compressive strength values. 

 

Figure 4.15 Relationship of rock sample diameter (mm) to UCS (MPa) with 

changing unit weight (gr/m3) in deformability experiment 

A total of 1796 data recordings were reviewed to understand this phenomenon. Out 

of these, only 386 results included both unit weight and diameter information 

together with the compressive strength. The sample diameter and density figures are 

grouped into specific categories by their unit weights to represent rock types. 
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According to these results, as the sample diameter size increases, the average 

compressive strength value decreases especially for the diameters 54 mm and 63 

mm. This result is observed for all groups of unit weight, in other words for available 

information about rock types. The size effect concept could be investigated in more 

detail in case the before and after photos taken for each specimen are analyzed. This 

way, additional information about the rock types could be identified and the size 

effect could be compared for the same type of rocks represented by similar test 

results. 

4.2 Results of the Data Mining Case Study 

The case study's primary objective was to successfully backfill the rock type 

information by classifying rock types using data mining techniques based on the 

results of various experiments. A decision tree and a random forest classifier were 

employed as classifiers. The variables that were introduced to the software as inputs 

were UCS (MPa), E (MPa), Poisson’s ratio, density (gr/cm3), unit weight (kN/m3), 

tensile strength (MPa) and σ1(MPa). C (MPa) and φ (°) variables are not included in 

this model; since these values are calculated specifically for the rock type, it would 

create a bias toward a successful classifier. 

Among the input variables, density and σ1 were the parameters selected by the 

algorithm to produce a classification tree. The developed decision tree model is given 

in Figure 4.16.  
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Figure 4.16 Decision tree model developed in the case study 

The decision tree algorithm used density values to classify ore and other types of 

rock. Phyllite, hornfels, and granite rocks were classified using density and σ1 

parameters. Table 4.1 provides the information for the tree constructed in the model. 

It can be concluded that model errors decrease as the number of splits in the model 

increase; the largest tree will always yield the lowest relative error rate and the lowest 

relative error rate will always be found in the largest tree. However, selecting the 

tree with the lowest relative error is not the best option because this tree will have a 

bias toward the training set as the number of splits in the tree increases. 

Table 4.1 Complexity table of the decision tree model 

Tree 

# 

Complexity 

parameter 

# of 

splits 

Relative 

error 

Cross validation 

error 

Standard 

error 

1 0.32353 0 1 1 0.11164 

2 0.11765 1 0.67647 0.67647 0.11018 

3 0.01 3 0.44118 0.64706 0.10925 
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The success of the classification can be measured by the confusion matrix, which 

shows the correct classification and misclassification of the target variable. Table 4.2 

provides information about the success of the decision tree model. This confusion 

matrix is created using the validation set. It is seen from this table that the algorithm 

had a 100 % error rate for granite and a 50 % error rate for phyllite. The overall error 

and averaged class error in this validation were 57.1 % and 37.5 %, respectively. 

Table 4.2 Confusion matrix of the decision tree model 

 Granite Hornfels Ore Phyllite Error (%) 

Granite 0 1 0 2 100 

Hornfels 0 1 0 0 0 

Ore 0 0 1 0 0 

Phyllite 0 1 0 1 50 

 

Another algorithm used in the case study was the random forest algorithm. The 

random forest algorithm uses a multitude of decision algorithms to improve 

classification performance. As there are many decision trees in this algorithm, 

visualization of the tree is not possible.  

The confusion matrix of the random forest model is given in Table 4.3. The shared 

matrix shows that almost all rock types were correctly classified except phyllite. The 

overall error and averaged class error in this validation were 14.2 % and 12.5 %, 

respectively. 

Table 4.3 Confusion matrix of the random forest model 

 Granite Hornfels Ore Phyllite Error (%) 

Granite 3 0 0 0 0 

Hornfels 0 1 0 0 0 

Ore 0 0 1 0 0 

Phyllite 0 1 0 1 50 
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Variable importance can also be measured in this algorithm. In Figure 4.17, the 

variable importance of the random forest algorithm is given. For each rock type, 

Poisson’s ratio was the most important feature. Except for the Poisson ratio, the order 

of importance of the variables varied according to the rock type.  

 

Figure 4.17 Variable importance of the random forest algorithm 

When the two algorithms are compared, the random forest model outperforms the 

decision tree model, as it has a lower error rate. The reason for this lower error rate 

is that the random forest algorithm can create more complicated trees. By increasing 

the amount and variety of data, better results can be obtained from both classifiers.  
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CHAPTER 5  

5 CONCLUSION 

The experimental results of the Rock Mechanics Laboratory of the METU 

Department of Mining Engineering have been stored in a scattered manner in 

electronic tables without a standard in print or digital media. This storage method is 

a weak infrastructure for both data security and reliability. At the same time, it does 

not provide an infrastructure suitable for collective analysis by restricting data access 

for researchers. For this reason, the results of experiments carried out in the rock 

mechanics laboratory during the years 2000 to 2021, within the scope of this project, 

were transferred to test tables within a database after a series of data cleaning and 

processing methods. With the determined rules in the tables, different test results of 

the same test type were stored with the same standards. Tables are linked to one 

another with a unique test number key, allowing querying between all tables. In this 

way, it is possible to perform a collective query within all tables. For example, it is 

possible to view the test results of different types of experiments carried out under a 

single project code with a single query. 

To provide data access for all researchers and enable collective analysis, the data in 

the database was transferred to the data warehouse through the SQL Server Data 

Tools package of the Visual Studio software. Data transfers take place via a 

connection between the database and the warehouse, and new information entries 

made to the database can also be updated in the data warehouse at certain times. 

OLAP cubes form the necessary infrastructures for the data analysis in the data 

warehouse and pre-determined calculations can be performed in these cubes, if 

necessary. In this way, the queries made during analysis are calculated and kept in 
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the cubes’ memory. This method not only provides an instant query opportunity for 

the researcher analyzing the data, but also ensures that the query results for any 

researcher connected to the cube are identical. At the same time, requiring 

permission to change the data in the data warehouse and OLAP cubes increases the 

reliability of the data by providing security. 

It is possible to connect to OLAP cubes to the libraries of R, Python, C#, C++ 

programming languages, as well as with software such as Microsoft Excel and 

Microsoft PowerBI, which are used through the graphical user interface. In this 

project, Microsoft PowerBI software was used for data analysis because it allows the 

use of programming languages such as R and python, in addition to the ready-made 

tools it offers. 

The results of 9,667 experiments with 284 different project codes were used in the 

analyzes made in the data warehouse through OLAP cubes. The experimental results 

in this data set vary in the amount of information shared about specific experiment 

details. The main reasons for this are company confidentiality requirements 

pertaining to sample information, missing information and the samples having pre-

existing weaknesses such as natural fractures and cracks. 

In the analyzes carried out, 3,870 of 9,667 experiments performed between 2000-

2021 were uniaxial/triaxial compression tests. The reasons for these tests being so 

predominant could include the amount of information that can be determined through 

these tests, the ease of sample preparation for cylindrical core samples, and 

comparably shorter testing times as compared to other tests, such as direct shear. 

Another finding is that the highest values in the average UCS results belong to 

rhyodacite, andesite, and limestone rocks, while the lowest values include rocks such 

as lignite, claystone, and clay. The results show that it is possible to match the 

available rock types by their UCS results in a consistent way. 
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When the results of the slake durability tests are examined, they verify that the 

stability index 1 is always greater than the stability index 2 in the parameters ID 1 

and ID 2, which are the parameters of the test results. This provides information to 

researchers about the reliability of the experimental results. 

When the indirect tensile test results are analyzed according to rock types, similar to 

the uni/triaxial compression test results, the tensile strengths of granite, andesite, and 

limestone rocks are observed to be much lower than rocks such as claystone, clay 

and lignite. 

Researchers can access the test results and sample information carried out between 

the years 2000-2021 through the data warehouse with this study. In addition to the 

test results, the data also includes information such as width, length, diameter, 

density, weight, volume, location, photos of rock samples before and after testing, 

rock class, and rock type. Researchers also have the opportunity to make instant 

queries through the OLAP cubes that store this information. 

A case study was conducted in order to show the potential knowledge discovery 

capability of the data warehouse system. For this case study, a project data set 

containing 300 rock mechanics experiments were queried from the data warehouse. 

The reason for choosing this data set was that different experiments were carried out 

on different rock types in the project. After analyzing this data set in detail, decision 

tree and random forest algorithms were trained to classify the type of rock tested 

through the Rattle software. Validation results show that the random forest model 

outperformed the decision tree model with respective 57.1 % and 14.2 % error rates. 

This case study shows that valuable information can be extracted from the data 

warehouse system when reliable sources of data are integrated. 

The missed opportunity in this study was that the data warehouse could not be 

integrated with the data sources from an operating mine. Integration with a fleet 
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management system, drill monitoring system or fragmentation analysis would enable 

researchers to relate the test results to dig rate, drill rate, blasting efficiency, and 

others. This integration would provide the potential utilization of data mining 

techniques for knowledge discovery to improve the decision-making process in the 

field. 

It is planned to keep the infrastructures created as a result of this study up to date by 

adding future experiments to the database. As future research, a graphical user 

interface will be developed as it is of key importance for better representation of the 

results and could enhance the utilization for users. In addition to these systems, an 

automatic reporting system can be set up via a template. Researchers can report the 

experiments carried out through the project code with the desired detail. 

Furthermore, a simultaneous outlier detection system during experiments in the rock 

mechanics laboratory could be created within this existing data warehouse system. 

With the prepared data warehouse and OLAP cubes, they can make the information 

ready for data mining after a series of manipulation and filtering processes. Lastly, 

before and after the experiment photographs of the rock samples could be analyzed 

with available image processing techniques. A potential relationship between the 

visual features and experiment results could be investigated in detail. 
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APPENDICES 

A. Tables in RMDB 

 

Figure A. 1 Brazilian test table in the RMDB 
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Figure A. 2 Static deformability test table in the RMDB 
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Figure A. 3 Density porosity test table in the RMDB 
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Figure A. 4 Direct shear test table in the RMDB 

 



 

 

79 

 

 

 

Figure A. 5 Point load test table in the RMDB 
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Figure A. 6 Slake durability test table in the RMDB 
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Figure A. 7 Uniaxial/Triaxial compression test table in the RMDB 
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Figure A. 8 ID table in the RMDB 

 

Figure A. 9 Rock types table in the RMDB 

 

Figure A. 10 Experiment information table in the RMDB 


